Study of Human Albumin Protein Interaction with Fluorouracil Anticancer Drug Using Molecular Docking Method
Authors
Abstract:
Introduction: Drugs are mainly delivered to the target tissues by plasma proteins, such as human serum albumin, in the human body. Practical information about the thermodynamic parameters of drugs and their stability can be obtained using simulation methods, such as molecular docking. Material & Methods: This study, investigated the molecular docking of human serum albumin with fluorouracil anticancer drug. Moreover, partial charges on serum albumin protein atoms and fluorouracil atoms were calculated in this study. The best configuration was also searched using the Lamarckian genetic algorithm. The dimensions of the grid maps were selected to be about 40 * 40 * 40 angstroms with a distance of 0.375 angstroms. The number of genetic algorithms and the number of studies were adjusted to about 100 and 2.5 million, respectively. In the end, the best performed interaction configurations with the least amount of free energy were selected. Ligplot and VMD graphic software were used to view the performed docking. Findings: In the best model, fluorouracil is able to bind to the human serum albumin protein HSA four hydrogen bonds via nitrogen and oxygen atoms with two amino acids tyrosine, one amino acid histidine and one amino acid arginine. The estimation of the free bond energies (kcal/mol) for the best model was -5.1. Negative Gibbs free energy values (ΔG °) indicated a spontaneous process, and a constant binding value (Ka ≈ 109 L • mol-1) demonstrated the optimal biological distribution of the drug in the blood plasma. Discussion & Conclusion: The docking study of the proposed models shows that fluorouracil has an aliphatic ring and hydrophobic fractions and therefore it has a high ability to form hydrophobic interactions with major amino acids at the active site of serum albumin protein.
similar resources
Study of interaction between nicotinamide and human serum albumin using spectroscopic techniques and molecular docking simulation simulation
Human serum albumin is one of the most important blood proteins that has the ability to bind a wide range of compounds and different drugs. Hence, knowing how drugs bind to albumin is crucial to understand their pharmacokinetics and pharmacodynamic properties. The binding of drugs to protein affects the drug's excretion, distribution and interaction in the target tissues. Nicotinamide (NA) is a...
full textBiophysical and Molecular Docking Studies of Human Serum Albumin Interactions with a Potential Anticancer Pt(II) Complex
The interaction between [Pt(phen)(pyrr-dtc)]NO3 (where phen = 1,10-phenanthroline and pyrr-dtc =pyrrolidinedithiocarbamat) with human serum albumin (HSA) was studied by fluorescence, UV–vis absorption, circular dichroism (CD) spectroscopy and molecular docking technique under like physiological condition in Tris–HCl buffer solution at pH 7.4. UV-Vis absorption spectroscopy indicates that the pro...
full textSpectroscopic, Docking and Molecular Dynamics Simulation Studies on the Interaction of Etofylline and Human Serum Albumin
The purpose of this study is to investigate the interaction of Etofylline as an established drug for asthma remedy, with the major transport protein in human blood circulation, the human serum albumin (HSA). In this respect, the fluorescence and circular dichroism (CD) spectroscopy techniques, along with the molecular docking and molecular dynamics simulation methods were employed. Analysis of ...
full textTheoretical Investigation of Interaction between 5-Fluorouracil Anticancer Drug with Various Nitrosamine Compounds
We present detailed theoretical studies of the H-bonded complexes formed from interaction between 5-fluorouracil and various six-membered cyclic nitrosamine compounds. In this study, an investigation on intermolecular interactions in X-NU (X = CH2, SiH2,BH, AlH, NH, PH, O and S) complexes is carried out using density functional theory. The calculations are conducted on B3L...
full textSpectroscopic, voltammetry and molecular docking study of binding interaction of antipsychotic drug with bovine serum albumin
The interaction between perazine dimaleate (PDM) and bovine serum albumin (BSA) was investigated by voltammetry, fluorescence spectroscopy, UV–vis spectroscopy, molecular docking and viscometric methods. The study was carried out in acetate buffer solution of pH 7.2, which was prepared by using 0.1 M sodium acetate and adjusting pH using 0.1 M hydrochloric acid. The voltammetric study of PDM sh...
full textSpectroscopic, Thermodynamic and Molecular Docking Studies on Interaction of Toxic Azo Dye with Bovine Serum Albumin
Investigation on interaction of azo dyes with bovine serum albumin as carrier protein will be important in the field of toxicology because of distribution and transportation of dyes in blood. In this regard, the interaction between the azo dye, trisodium (4E)-3-oxo-4-[(4- sulfonato-1- naphthyl) hydrazono] naphthalene-2,7-disulfonate (C20H11N2Na3O10S3), known as Amaranth and bovine serum albumin...
full textMy Resources
Journal title
volume 30 issue 2
pages 32- 40
publication date 2022-06
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023